

national accelerator laboratory

EXP-68 November 5, 1974

ACCELERATOR EXPERIMENT: Coherent Tune Shift at High Energy

in the Booster

Experimentalists: J. Lackey, F. Mills, A. Ruggiero, M. Shea

Date Performed: October 24, 1974

The measurement of the coherent tune shift at high energy in the Booster has been done under the same operation conditions as specified in EXP-65. Only the vertical tune has been measured by kicking the beam with a notcher. Because of the kick, few percent of the beam intensity were lost. The kick was applied at $t_1 = 8$ msec and $t_2 = 18$ ms after injection. The charge was also measured a little after these times. The fractional tune is displayed vs. beam intensity in Figs. 1 and 2 for $t_2 = 18$ ms and in Fig. 3 for $t_1 = 8$ ms. The beam intensity was changed as explained in EXP-65, either by acting on S1 (Fig. 1) or on QV 25 (Figs. 2 and 3).

Table I summarizes the data. The bunching factor B has been derived by measuring the bunch length (see Figs. 4, 5 and 6). The Laslett coefficients α_M and α_E are the same as calculated in EXP-65. $\Delta\nu_{\mbox{calc.}}$ is the tune shift calculated according to the Laslatt formula

$$\Delta v = -\frac{Nr_p R}{\pi v \gamma} \left[(\alpha_M + \alpha_E) + \frac{\alpha_E}{B \beta^2 \gamma^2} \right]$$

 Δv_{meas} is the measured tune shift.

There is a discrepancy between measurement and calculation of ~20% at t_1 = 8 ms and ~50% at t_2 = 18 ms. The measured shifts resulted larger than the calculated ones.

A.G. Ruggiero

Table I

Time	8 ms		18 ms
ß	0.8839		0.9843
Ý	2.14		5.66
B BB ² y ²	0.2		0.1
	0.716	7.0	3.10
Ŋ		1.0x10 ¹²	
rp		1.5347×10^{-18} m	
R		75.4717 m	
ν		6.8	
$\alpha_{ m M}$		0.218 cm^{-2}	
$lpha_{\overline{\mathrm{E}}}$		0.0519 cm^{-2}	
$(\alpha_{\text{M}} + \alpha_{\text{E}}) + \frac{\alpha_{\text{E}}}{B\beta^2 \gamma^2}$	0.342 cm ⁻²		0.287 cm ⁻²
Nr _p R/πυγ	0.0236 cm ²		0.0095 cm ²
$^{\Delta extsf{v}}$ calc	-0.0081		-0.0027
$^{\Delta u}$ meas	-0.01		-0.005

**** **/**/**